2 - Legge di Gauss

2-1.

Sia data una distribuzione superficiale uniforme di carica σ disposta su di un piano indefinitamente esteso, nel vuoto. Utilizzare la legge di Gauss per determinare il campo elettrostatico \bar{E}_0 .

2-2.

Sia data una distribuzione volumica uniforme di carica ρ , disposta a forma di uno strato piano di estensione indefinita e di spessore d finito, nel vuoto. Utilizzare la legge di Gauss per determinare il campo elettrostatico \bar{E}_0 in tutto lo spazio.

2-3.

Sia data una distribuzione superficiale uniforme di carica σ disposta su di una superficie cilindrica di altezza indefinita e raggio R, nel vuoto. Utilizzare la legge di Gauss per determinare il campo elettrostatico \bar{E}_0 in tutto lo spazio.

2-4.

Sia data una distribuzione volumica uniforme di carica ρ che riempie un volume cilindrico di altezza indefinita e raggio R, nel vuoto. Utilizzare la legge di Gauss per determinare il campo elettrostatico \bar{E}_0 in tutto lo spazio.

2-5.

(a) Sia data una distribuzione volumica uniforme di carica ρ che riempie un volume sferico di raggio R nel vuoto. Utilizzare la legge di Gauss per determinare il campo elettrostatico \bar{E}_0 in tutto lo spazio. (b) Si considerino due di queste sfere, con densità di carica opposta $(+\rho, -\rho)$ e parzialmente compenetrate. Determinare il campo elettrostatico \bar{E}_0 nella zona di sovrapposizione tra le due distribuzioni.

2-6.

Una distribuzione volumica uniforme di carica ρ di forma sferica con raggio R_1 ha al suo interno una zona priva di carica, anch'essa sferica, di raggio R_2 ma non concentrica con la distribuzione. Usare il principio di sovrapposizione per determinare il campo elettrostatico \bar{E}_0 sia fuori dalla sfera che dentro la cavità.

2-7.

(a) Una distribuzione volumica di carica non uniforme ha legge $\rho(r)$ e riempie un volume sferico in vuoto. Determinare la funzione $\rho(r)$ tale che il campo elettrostatico $\bar{E}_0(r)$ sia uniforme entro la sfera. Discutere il risultato in termini fisici. (b) Allo stesso modo, trovare la $\rho(r)$ tale che $\bar{E}_0 \sim r^2$, data una carica totale Q.